
CogCx

This note describes the examples used for CogCx more fully.

Cohesion Levels

Cohesion levels were introduced as part of structured design (Coincidental, Logical, Temporal,

Procedural, Communicational, Sequential, Functional). The cohesion element of the CogCx directly

measures the Sequential cohesion between two code elements. The example below shows how the

metric is consistent with the Communicational level of cohesion.

This example assumes that method1 is always called before method2 so moving the statement that calls

methodB as shown doesn't modify the behaviour of the application. In the initial position the statement

that calls methodB is a sibling of the other statements in method2 and so the cohesion metric is

calculated between them. This results in a high value as methodB and the variables in the other

statements of method2 are far apart on the dependency graph. When we move the methodB call, the

cohesion metric is now calculated with the statement in method1. In our example, Target.methodA()

and OtherTarget.methodB() are within the same package and are closer on the dependency graph due to

the dependencies amongst that package. This results in an overall reduction in the cohesion metric.

TABLE I. COMMUNICATIONAL COHESION LEVEL

 element Cognitive cohesion coupling Total

Before 8 26 1381.22 173.71 1588.93

After 9 10 5.27 175.54 199.81

Aside: There is also a coupling penalty for the calls to methodA and methodB, which could be reduced

if they were moved closer (on the structural graph) to the dependency (e.g. by moving method1 to one

of the Target classes). Moving closer to Target may have an adverse impact on the cognitive penalty of

that class and also on the coupling penalty of the statement that sets the callerAttribute1. As we shall

see in the refactoring examples, below, decreasing one part of CogCx often leads to an increase in

another.

Extract Method

The below results show the aggregate metric values for a long method (before) that has been split into

two (after).

TABLE II. REFACTORING: EXTRACT METHOD

 element cognitive cohesion coupling Total

Before 9 5041 9.56 11.15 5070.71

After 12 15 2.94 33.45 63.39

The biggest gain in splitting up the before method into two is with the cognitive penalty. Also of note

is that cohesion is improved at the expense of a decrement to coupling and element costs.

From

 public int before() {
 int f =1;
 int g = f+4;
 int e=f*g;
 int t= 2;
 int u=t+5;
 int s=t*u;
 return e+s;
 }

To:
 public int after() {
 return afterPart1() + afterPart2();
 }

 public int afterPart1() {
 int g =1;
 int f = g+4;
 return g*f;
 }

 public int afterPart2() {
 int u= 2;
 int t=u+5;
 u*t;
 }

Inline Method

For the inline method example, moving all the behaviour to one method doesn't break the short term

memory capacity limit (the cognitive penalty function is a near barrier function). Consequently the

improvement in coupling is more than enough to offset degradation of the cohesion cost and cognitive

penalty.

TABLE III. REFACTORING: INLINE METHOD

 element cognitive cohesion coupling Total

Before 10 11 1.92 37.6 60.52

After 6 25 2.22 8.74 41.96

From
 public int before() {
 int b =1;
 int a = b*beforePart1(b) ;
 return a ;
 }

 private int beforePart1(int b) {
 int c = b+4;
 return c;
 }

To:

 public int after() {
 int b =1;
 int c = b+4;
 int a=b*c;
 return a;
 }

Design Patterns

The design pattern tests centre around a fictitious requirement that a calling abstraction needs to call

behaviour(s) on a target abstraction. The three versions differ based on the complexity of the caller and

target behaviours and the detailed relationships between caller and target.

 Simple: A simple, single target behaviour for a number of varieties and there is only one caller
of this behaviour.

 Complex 1 to 1: Complex set of target behaviours for a number of varieties. Each of the

varieties has a one-to-one dependency with the varieties of the calling abstraction.

 Complex independent: Complex set of behaviours for a number of varieties. Behaviours are
called by various unrelated callers.

These versions have been chosen so that the approaches below will be the preferred designs for each

version in turn

 Switch: Simple method that utilises switch

 Hierarchy: target behaviours are incorporated into the varieties of the calling code, similar to
the Template pattern.

 Strategy: Strategy pattern, behaviours are grouped independent of calling code.

TABLE IV. DESIGN PATTERN

 Switch Hierarchy Strategy

Simple 107 171 421

Complex 1 to 1 3386 1374 1513

Complex Independent 10724 3640 1321

More Detailed
Number Of
Varieties

Problem Solution Element Cognitive Cohesion Coupling Total

five complex1to1 hierarchy 216 514 389.29 437.59 1556.88

five complex1to1 strategy 308 550 331.17 506.07 1695.24

five complex1to1 switch 247 1386 4923.48 442.36 6998.84

five complexIndep hierarchy 695 1215 407.61 1357.08 3674.69

five complexIndep strategy 242 302 124.53 659.90 1328.43

five complexIndep switch 550 50915 1078.49 1538.19 54081.67

five simple hierarchy 57 20 2.51 43.64 123.14

five simple strategy 87 42 13.90 93.83 236.73

five simple switch 36 22 11.89 37.21 107.10

one complex1to1 hierarchy 59 117 92.63 109.67 378.30

one complex1to1 strategy 88 126 83.02 113.43 410.45

one complex1to1 switch 69 159 85.18 112.93 426.11

one complexIndep hierarchy 57 165 53.29 103.61 378.90

one complexIndep strategy 61 69 28.60 97.12 255.72

one complexIndep switch 52 5099 71.18 111.12 5333.30

one simple hierarchy 25 12 2.51 15.13 54.64

one simple strategy 41 20 12.09 33.78 106.87

one simple switch 23 17 4.07 11.17 55.24

The following sections give UML diagrams for the three requirements. I use the <<analogy>>

stereotype to represent the analogy/abstraction of the problem. How these are implemented in code (as

classes etc.) will be different for each of the three solutions and these diagrams use the stereotype

<<class>>. The three solutions are given for the simple single case.

The Element Costs and path lengths were chosen to reflect the additional cost of the mechanics of

traversing the code (specifically on the impact of short term memory). For example, the dependency

link between two statements in the same method typically takes a movement of the eye to traverse, but

the dependency link between two methods requires a little longer and if you have to research where a

class is it may take even longer. As discussed in “Writing Code For Other People” seconds count with

short term memory. Details of values used in the metric are as follows:

 Element costs: Methods 2, Type&Package 5 everything else 1

 Structural Path Costs: Package & Type 10, Method 5, statement 2 all else 1. (the actual length

is the average of the two ends)

Simple Single

In this case the caller abstractions/analogies is small and simple. The target abstraction/analogy has

only one simple behaviour (behaviourA) which is dependent upon attributes from the caller.

Number Of
Varieties Problem Solution Element Cognitive Cohesion Coupling Total

five Simple hierarchy 57 20 2.51 43.64 123.14

five Simple strategy 87 42 13.90 93.83 236.73

five Simple switch 36 22 11.89 37.21 107.10

one Simple hierarchy 25 12 2.51 15.13 54.64

one Simple strategy 41 20 12.09 33.78 106.87

one simple switch 23 17 4.07 11.17 55.24

Switch Solution
The switch solution is shown in the UML diagram below. The key part of the switch solution is that

the code for the Target analogy is placed in the same class as the caller, and so.

i. Elements that have a dependency link are closer together on the structural graph and so

coupling is reduced.

ii. The target behaviour is within the calling class so there are additional cohesion costs (between

the target behaviour and the other methods in the calling class).

iii. Adding a method to an existing class can introduce a large cognitive penalty (dependent upon

how many methods pre-exist in in the class). For example adding a method to a class with 3

methods introduces an additional penalty of 4!-3! = 18 but if the class already had 4 methods it

would introduce an additional penalty of 5!-4! = 96. For our simple solution however the

calling class is lightweight and so the additional cost is small.

Hierarchy
The UML is below, the key point is that each implementation of behaviourA is within its own class

which means that the hierarchy solution will produce more classes than the switch solution. However,

the simple nature of the caller and target classes in this example means that those classes will be have a

small number of elements (attributes/methods).

i. Element costs are greater (each class has an element cost).

ii. The small number of elements in the classes means there are fewer relationships that contribute

to the cohesion cost. However the relationships that exist in the requirements must be satisfied

between the classes and so coupling is increased.

iii. The hierarchy CogCx value for one variety is (marginally) the smallest of the three solutions,

but for five varieties, the switch solution is the optimal. As discussed in the extensibility

chapter, a good designer will sometimes prefer a slightly non-optimal solution at the start of

coding for the promise of it becoming optimal as more varieties are implemented.

Strategy
The UML is below, the key point is that the Target analogy is represented in its own class structure.

This larger framework/structure will cause increases in all the CogCx costs.

i. A greater number of classes causes a greater element cost.

ii. A larger/deeper structure causes an increase in distances on the structural graph (between

dependent elements) and so coupling costs are increased.

iii. Introducing accessor methods for a and b increases distances on the dependency graph and so

cohesion costs are increased for elements that access these attributes.

iv. Although individual cognitive costs are small there are more elements to sum over, so the total

cognitive cost is increased. Note: as the complexity of Caller, Target and their behaviours

becomes more complex (the complex scenarios below) the strategy solution here has more

capacity to fit this complexity within its structure without crossing the barrier of the cognitive

cost function.

Complex 1 to 1:

This scenario has a link between the varieties of the Target and Caller and adds complexity to the Caller

and Target analogies (the aCallernSpecific methods; aTgt and xTargetn attributes; and

oneAdditionalTarget1 methods). Please note that these methods and attributes have been introduced to

“bulk out” the complexity of the Caller and Target analogies and are meant to represent methods that

serve dissimilar behaviour. The difficulty in generating such examples is that they need to provide

complexity but shouldn’t be so complicated that the example itself becomes difficult to understand.

For example, the aCaller1Specific methods have been written to follow a pattern so that their presence

as additional complexity in the example is easily understood. As they stand in the example, a keen eyed

developer may suggest that they are candidates for refactoring into an abstraction. However, in the real

world cases, these methods would be different behaviours that have very little commonality amongst

them and so refactoring wouldn’t be realistic.

Number Of
Varieties Problem Solution Element Cognitive Cohesion Coupling Total

five complex1to1 hierarchy 216 514 389.29 437.59 1556.88

five complex1to1 strategy 308 550 331.17 506.07 1695.24

five complex1to1 switch 247 1386 4923.48 442.36 6998.84

one complex1to1 hierarchy 59 117 92.63 109.67 378.30

one complex1to1 strategy 88 126 83.02 113.43 410.45

one complex1to1 switch 69 159 85.18 112.93 426.11

 Switch Solution - The complexity of the target abstraction means that fitting it within the caller

class produces a class that is too big and so the cognitive barrier is breached producing a high

cognitive cost.

 Hierarchy solution – in comparison with its closest alternative (the strategy solution), the hierarchy
solution sacrifices a higher cohesion cost (due to putting the target and caller varieties together) but

benefits from a reduced coupling as the dependency between the individual target and caller

varieties are closer together on the structural graph.

 Strategy. The element and cognitive penalties are still high due to the independent infrastructure of
the solution which (for the complex1to1 scenario at least) isn’t providing a large benefit in

coupling/cohesion.

Complex Independent

Number Of
Varieties Problem Solution Element Cognitive Cohesion Coupling Total

five complexIndep hierarchy 695 1215 407.61 1357.08 3674.69

five complexIndep strategy 242 302 124.53 659.90 1328.43

five complexIndep switch 550 50915 1078.49 1538.19 54081.67

one complexIndep hierarchy 57 165 53.29 103.61 378.90

one complexIndep strategy 61 69 28.60 97.12 255.72

one complexIndep switch 52 5099 71.18 111.12 5333.30

Here the tactic of incorporating the target and caller into one class (either at the analogy or variety

level) that is employed by the switch and the hierarchy solutions, cause a greater cognitive and element

cost as much of the code needs to be repeated.

Statement Chunking

The long method below is ripe for decomposition and the proposal is to use blank lines to break it up

into chunks of code (so that the chunks are cohesive). There are 9 statements (the “if” statement is the

only one uses more than one line). We could position blank lines in any or all of the 8 positions in

between the 9 statements. This gives us 2
8
 permutations. The metric was calculated for all 256 cases

and the lowest scoring solutions are in the table below. The code shown below is the optimum

solution, however there are a number of solutions whose measure was similar in value.

double calc(PurchaseItem purchase)
{
 double a_lineCost = purchase.lineItemPrice() * purchase.quantity();

 s_monthToDate += a_lineCost;
 double b_monthPercentSaving =0;

 if(s_monthToDate > t_monthThreshold)
 b_monthPercentSaving=u_monthDiscount;
 double c_monthMonetarySaving = a_lineCost * b_monthPercentSaving/100;
 double d_customerMonetarySaving = a_lineCost * v_customerDiscount/100;

 double e_tax = (a_lineCost-d_customerMonetarySaving-c_monthMonetarySaving) * w_taxRate;
 double result = a_lineCost-d_customerMonetarySaving-c_monthMonetarySaving+e_tax;
 return result;
}

The “key” is the decimal representation of the choices (i.e. for each blank line between statement n and

statement n+1 we add 2
n-1

 to the key)

Blank Lines Position

key cognitive element cohesion coupling Total 1->2 2->3 3->4 4->5 5->6 6->7 7->8 8->9

37 59 33 479 104 675 Y Y Y

41 59 33 480 104 676 Y Y Y

73 59 33 480 104 676 Y Y Y

18 75 32 479 102 687 Y Y

34 75 32 480 102 689 Y Y

21 73 33 479 104 689 Y Y Y

69 73 33 480 104 690 Y Y Y

81 73 33 480 104 690 Y Y Y

17 75 32 480 104 691 Y Y

19 76 33 479 104 692 Y Y Y

35 76 33 480 104 693 Y Y Y

Code

Caveat:

When trying to understand something we may draw rough sketches, sometimes attaching early names

to things. As our understanding grows the initial, draft sketches are no longer an accurate reflection of

our current understanding. We may have paid too much attention to what is now known to be a trivial

detail and conversely not enough attention to what is now clearly an important part. The initial

choices for names may now seem at odds with our deeper understanding. I am typing this caveat in the

same environment that much of the code was written, on a busy commuter train early in the morning,

traveling to my day job. This is a long way of saying that I know the code in its current state needs a

good refactor. The intention was that this code was a prototype, proof of concept that could be thrown

away, once enough had been understood about the problem to approach writing an alpha version.

Please bear this in mind when you see complexities or confusing names. So why release the code at

all? As this version of the code was used to generate the data in the paper, I felt it only appropriate that

it be available for confirmation should anyway wish to.

Some Confusions:

• USM – the original chosen name for the CogCx metric (unified software metric)

• Associations/dependencies : used for different purposes throughout the code (sorry)

• Analogical links are added to identify varieties of analogies (need to calculate cognitive

penalty). These may just be non-contributing dependencies.

Additionally not all java element structures have been implemented and the performance has not been

tested. Consequently, trying this version of the plugin on large codebases will almost certainly be a

fruitless endeavour.

Code Description

There are six eclipse projects that need to be loaded into five separate workspaces (in each case create

the worksace and then import the project using FileImport, then select “Existing Projects into

Workspace” under “General” and select the root directory as defined in the in the table below)

Workspace Folder in Code Distribution Project Description

workspace_USMPlugin USMPlugin/com.tmullen.usm The metric

 USMTest/com.tmullen.test classes to call and check
the values from the re-
factoring examples

workspace_USMRefactoring USMTestCases/UsmTestCases the refactoring examples
(before and after) code.

workspace_USMPatterns USMStrategy/Test Code for the Design Pat-
tern example

workspace_USMCohesion USMCohesion/Test Code for the cohesion
example

workspace_USMParametric USMParametric/Test Code for the parametric
example

Output and analysis.

The plugin will generate csv files of the data as well as a GrahViz dot file that can be used to generate a

graph. These files are saved to a directory specified in the USMCalculator class in the USMPlugin

project

 public static final String directory = "C:\\Users\\Tom\\GraphViz\\" ;

Csv and dot files are generated for each Class/Type as well as each package. The UNIVERSE csv file

gives all the data in one csv file.

CSV file has the following columns

Column Header Description

Name not used (internal name of the node in the dot graph)

Label code element identifier (the ASTView label naming convention is
duplicated here)

parentLabel identifier of parent in the structural graph (parentRelation-
ship=STRUCTURE) or the related element for other types

parentRelationship relationship type that is being reported (STRUCTURE, ASSOCIATIVE,
ASSOC_DIST, STRUC_DIST, ASSOC_LINK)

Type Type of code element (e.g. VARIABLE, METHOD, PACKAGE,TYPE)

Class AST class of element

Snippet short snippet of the text of the code

cogOverload cognitive penalty for this element

elementCost element cost for this element

Cohesion cohesion cost for this element

Coupling coupling cost for this element

aggCogOverload aggregate cognitive penalty for this element and all it's descendents
on the structural graph

aggElement aggregate element cost for this element and all it's descendents on
the structural graph

aggCohesion aggregate cohesion cost for this element and all it's descendents on
the structural graph

aggCoupling aggregate coupling cost for this element and all it's descendents on
the structural graph

Generating the Data

Parametric

1) Switch to the USMPlugin workspace

2) Go to the Run configurations (“Run”->”Run Configurations…”)

3) Create a new “JUnit Plug-in Test” for the ParametricTests class (see screenshot)

4) On the Main tab, point to the USM_Refactoring workspace and make sure the “Clear” tick box

is not selected under the “Workspace Data”

5) Select “Run an Application” under “Program To Run” and choose “[No Application] – Headless

Mode”

Run this test and upon completion the console log will display a comma separated table of the results

(note the lines below have been truncated). Go to the top of the table to get the optimum values (the

table is sorted in ascending order by totalCost)
---,key,cognitiveOverloadPenalty,elementCost,cohesionCost,couplingCost,chunkCost,totalCost
---,37,59.0,33.0,479.32434642696916,103.84099798701314,616.1653444139823,675.1653444139823…
---,41,59.0,33.0,480.1536501998002,103.84099798701314,616.9946481868134,675.9946481868134…
---,73,59.0,33.0,480.1536501998002,103.84099798701314,616.9946481868134,675.9946481868134…
---,18,75.0,32.0,478.72228643564125,101.59987679913604,612.3221632347772,687.3221632347772…
---,34,75.0,32.0,479.9264064182972,101.59987679913604,613.5262832174333,688.5262832174333…
---,21,73.0,33.0,478.72228643564125,103.84099798701314,615.5632844226544,688.5632844226544…
---,69,73.0,33.0,479.9264064182972,103.84099798701314,616.7674044053103,689.7674044053103…
---,81,73.0,33.0,480.1536501998002,103.84099798701314,616.9946481868134,689.9946481868134…
---,17,75.0,32.0,480.1536501998002,103.84099798701314,615.9946481868134,690.9946481868134…
---,19,76.0,33.0,478.72228643564125,103.84099798701314,615.5632844226544,691.5632844226544…
---,35,76.0,33.0,479.9264064182972,103.84099798701314,616.7674044053103,692.7674044053103…

At first glance, this approach may seem useful as a way to automatically suggest design refactoring.

However, for a more general case the problem becomes identifying the alternative code structures that

are equivalent in behaviour. If the software language were designed with “equivalent” code structures

that were easy to transform between, then this approach would become more generally applicable.

Alternatively if there was a “usually” equivalent code structures and sufficient automated testing then

candidate transformations could be validated.

Cohesion Level

1) Switch to the USMPlugin workspace

2) Go to the Run configurations (“Run”->”Run Configurations…”)

3) Create a new “Eclipse Application” that points to the workspace_USMCohesion and for which

the program to run is the workbench (see screenshot)

1) Run this “Run configuration”

2) A new workbench with the design patterns test code will be opened. Initiate a complete build

(“Project”-> “Clean…” if you have your workspace set to automatic build)

3) Go to the output directory and open up the newly created UNIVERSE.csv file

4) Extract the rows with the following labels (it may be easier to Filter the data to only rows with

type = TYPE). The data for each case is in the aggregate columns

Lcom/tmullen/cohesion/caller/After;

Lcom/tmullen/cohesion/caller/Before;

Refactoring

1) Switch to the USMPlugin workspace

2) Go to the Run configurations (“Run”->”Run Configurations…”)

3) Create a new “JUnit Plug-in Test” for the RefactorTests class (see screenshot)

4) On the Main tab, point to the USM_Refactoring workspace and make sure the “Clear” tick box

is not selected under the “Workspace Data”

5) Select “Run an Application” under “Program To Run” and choose “[No Application] – Headless

Mode”

Run this test and upon completion the console log will show the following

Testing[StatementGroupTest]..
beforeMetrics [148.29, 121, 8, 15.98, 3.31,]
afterMetrics [55.97, 27, 9, 18.47, 1.51,]
test results [true, true, true, true, true,]
Overall Test Result[PASS]
Testing[ExtractMethodTest]..
beforeMetrics [5,088.89, 5,041, 10, 17.78, 20.1,]
afterMetrics [109.8, 18, 18, 68.45, 5.34,]
test results [true, true, true, true, true,]
Overall Test Result[PASS]
Testing[InlineMethodTest]..
beforeMetrics [65.38, 12, 13, 30.69, 9.69,]
afterMetrics [51.84, 25, 7, 15.38, 4.46,]
test results [true, true, true, true, true,]
Overall Test Result[PASS]

The values in the square brackets are [Total, Cognitive Penalty, Element Cost, Coupling, Cohesion] in

that order.

Design Patterns Data

1) Switch to the USMPlugin workspace

2) Go to the Run configurations (“Run”->”Run Configurations…”)

3) Create a new “Eclipse Application” that points to the workspace_USMPatterns and for which

the program to run is the workbench (see screenshot)

4) Run this “Run configuration”

5) A new workbench with the design patterns test code will be opened. Initiate a complete build

(“Project”-> “Clean…” if you have your workspace set to automatic build)

6) Go to the output directory and open up the newly created UNIVERSE.csv file

7) Extract the rows with the following labels (it may be easier to Filter the data to only rows with

type = PACKAGE). The data for each case is in the aggregate columns
Lcom/tmullen/fivevarieties/onebehaviour/complex1to1/hierarchy
Lcom/tmullen/fivevarieties/onebehaviour/complex1to1/strategy
Lcom/tmullen/fivevarieties/onebehaviour/complex1to1/sw1tch
Lcom/tmullen/fivevarieties/onebehaviour/complexindependent/hierarchy
Lcom/tmullen/fivevarieties/onebehaviour/complexindependent/strategy
Lcom/tmullen/fivevarieties/onebehaviour/complexindependent/sw1tch
Lcom/tmullen/fivevarieties/onebehaviour/simplesingle/hierarchy
Lcom/tmullen/fivevarieties/onebehaviour/simplesingle/strategy
Lcom/tmullen/fivevarieties/onebehaviour/simplesingle/sw1tch
Lcom/tmullen/onebehaviour/complex1to1/hierarchy
Lcom/tmullen/onebehaviour/complex1to1/strategy
Lcom/tmullen/onebehaviour/complex1to1/sw1tch
Lcom/tmullen/onebehaviour/complexindependent/hierarchy
Lcom/tmullen/onebehaviour/complexindependent/strategy
Lcom/tmullen/onebehaviour/complexindependent/sw1tch
Lcom/tmullen/onebehaviour/simplesingle/hierarchy
Lcom/tmullen/onebehaviour/simplesingle/strategy
Lcom/tmullen/onebehaviour/simplesingle/sw1tch

